{ "id": "1408.5793", "version": "v1", "published": "2014-08-25T15:12:31.000Z", "updated": "2014-08-25T15:12:31.000Z", "title": "A metric characterization of snowflakes of Euclidean spaces", "authors": [ "Kyle Kinneberg", "Enrico Le Donne" ], "categories": [ "math.MG" ], "abstract": "We give a metric characterization of snowflakes of Euclidean spaces. Namely, a metric space is isometric to $\\mathbb R^n$ equipped with a distance $(d_{\\rm E})^\\epsilon$, for some $n\\in \\mathbb N_0$ and $\\epsilon\\in (0,1]$, where $d_{\\rm E}$ is the Euclidean distance, if and only if it is locally compact, $2$-point isometrically homogeneous, and admits dilations of any factor.", "revisions": [ { "version": "v1", "updated": "2014-08-25T15:12:31.000Z" } ], "analyses": { "keywords": [ "euclidean spaces", "metric characterization", "snowflakes", "admits dilations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.5793K" } } }