{ "id": "1408.5718", "version": "v1", "published": "2014-08-25T10:53:18.000Z", "updated": "2014-08-25T10:53:18.000Z", "title": "Lebesgue points via the Poincaré inequality", "authors": [ "Nijjwal Karak", "Pekka Koskela" ], "comment": "16 pages", "categories": [ "math.FA" ], "abstract": "In this article, we show that in a $Q$-doubling space $(X,d,\\mu),$ $Q>1,$ which satisfies a chain condition, if we have a $Q$-Poincar\\'e inequality for a pair of functions $(u,g)$ where $g\\in L^Q(X),$ then $u$ has Lebesgue points $H^h$-a.e. for $h(t)=\\log^{1-Q-\\epsilon}(1/t).$ We also discuss how the existence of Lebesgue points follows for $u\\in W^{1,Q}(X)$ where $(X,d,\\mu)$ is a complete $Q$-doubling space supporting a $Q$-Poincar\\'e inequality for $Q>1.$", "revisions": [ { "version": "v1", "updated": "2014-08-25T10:53:18.000Z" } ], "analyses": { "subjects": [ "46E35", "28A78", "28A15" ], "keywords": [ "lebesgue points", "poincare inequality", "doubling space", "chain condition" ], "publication": { "doi": "10.1007/s11425-015-5001-9", "journal": "Science in China A: Mathematics", "year": 2015, "month": "Aug", "volume": 58, "number": 8, "pages": 1697 }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015ScChA..58.1697K" } } }