{ "id": "1408.5655", "version": "v1", "published": "2014-08-25T03:13:13.000Z", "updated": "2014-08-25T03:13:13.000Z", "title": "Automorphism loci for the moduli space of rational maps", "authors": [ "Nikita Miasnikov", "Brian Stout", "Phillip Williams" ], "comment": "29 pages", "categories": [ "math.DS" ], "abstract": "Let $k$ be an algebraically closed field of characteristic $0$ and $\\mathcal{M}_d$ the moduli space of rational maps on $\\mathbb{P}^1$ of degree $d$ over $k$. This paper describes the automorphism loci $A\\subset \\mathrm{Rat}_d$ and $\\mathcal{A}\\subset \\mathcal{M}_d$ and the singular locus $\\mathcal{S}\\subset\\mathcal{M}_d$. In particular, we determine which groups occur as subgroups of the automorphism group of some $[\\phi]\\in\\mathcal{M}_d$ for a given $d$ and calculate the dimension of the locus. Next, we prove an analogous theorem to the Rauch-Popp-Oort characterization of singular points on the moduli scheme for curves. The results concerning these distinguished loci are used to compute the Picard and class groups of $\\mathcal{M}_d, \\mathcal{M}^s_d,$ and $\\mathcal{M}^{ss}_d$.", "revisions": [ { "version": "v1", "updated": "2014-08-25T03:13:13.000Z" } ], "analyses": { "keywords": [ "moduli space", "rational maps", "automorphism loci", "rauch-popp-oort characterization", "class groups" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.5655M" } } }