{ "id": "1408.5110", "version": "v1", "published": "2014-08-21T18:57:27.000Z", "updated": "2014-08-21T18:57:27.000Z", "title": "Large gaps between primes", "authors": [ "James Maynard" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "We show that there exists pairs of consecutive primes less than $x$ whose difference is larger than $t(1+o(1))(\\log{x})(\\log\\log{x})(\\log\\log\\log\\log{x})(\\log\\log\\log{x})^{-2}$ for any fixed $t$. Our proof works by incorporating recent progress in sieve methods related to small gaps between primes into the Erdos-Rankin construction. This answers a well-known question of Erdos.", "revisions": [ { "version": "v1", "updated": "2014-08-21T18:57:27.000Z" } ], "resources": [ { "type": "posts", "source": "Quanta Magazine", "title": "Prime Gap Grows After Decades-Long Lull", "href": "https://www.quantamagazine.org/20141210-prime-gap-grows-after-decades-long-lull/", "status": "public" } ], "analyses": { "subjects": [ "11N05", "11N35" ], "keywords": [ "large gaps", "well-known question", "erdos-rankin construction", "small gaps", "proof works" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.5110M" } } }