{ "id": "1408.5048", "version": "v1", "published": "2014-08-21T15:59:55.000Z", "updated": "2014-08-21T15:59:55.000Z", "title": "Lower bounds on the projective heights of algebraic points", "authors": [ "Charles L. Samuels" ], "journal": "Acta Arith. 125 (2006), no. 1, 41--50", "categories": [ "math.NT" ], "abstract": "If $\\alpha_1,\\ldots,\\alpha_r$ are algebraic numbers such that $$N=\\sum_{i=1}^r\\alpha_i \\ne \\sum_{i=1}^r\\alpha_i^{-1}$$ for some integer $N$, then a theorem of Beukers and Zagier gives the best possible lower bound on $$\\sum_{i=1}^r\\log h(\\alpha_i)$$ where $h$ denotes the Weil Height. We will extend this result to allow $N$ to be any totally real algebraic number. Our generalization includes a consequence of a theorem of Schinzel which bounds the height of a totally real algebraic integer.", "revisions": [ { "version": "v1", "updated": "2014-08-21T15:59:55.000Z" } ], "analyses": { "subjects": [ "11R04" ], "keywords": [ "lower bound", "algebraic points", "projective heights", "totally real algebraic number", "totally real algebraic integer" ], "tags": [ "journal article" ], "publication": { "doi": "10.4064/aa125-1-4", "journal": "Acta Arithmetica", "year": 2006, "volume": 125, "number": 1, "pages": 41 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006AcAri.125...41S" } } }