{ "id": "1408.4619", "version": "v1", "published": "2014-08-20T12:02:29.000Z", "updated": "2014-08-20T12:02:29.000Z", "title": "Invariant space under Hénon renormalization : Intrinsic geometry of Cantor attractor", "authors": [ "Young Woo Nam" ], "categories": [ "math.DS" ], "abstract": "Three dimensional H\\'non-like map $$ F(x,y,z) = (f(x) - \\epsilon (x,y,z),\\ x,\\ \\delta (x,y,z)) $$ is defined on the cubic box $ B $. An invariant space under renormalization would appear only in higher dimension. Consider renormalizable maps each of which satisfies the condition $$ \\partial_y \\delta \\circ F(x,y,z) + \\partial_z \\delta \\circ F(x,y,z) \\cdot \\partial_x \\delta (x,y,z) \\equiv 0 $$ for $ (x,y,z) \\in B $. Denote the set of maps satisfying the above condition be $ \\mathcal N $. Then the set $ \\mathcal N \\cap \\mathcal I(\\bar \\epsilon) $ is invariant under the renormalization operator where $ \\mathcal I(\\bar \\epsilon) $ is the set of infinitely renormalizable maps. H\\'enon like diffeomorphism in $ \\mathcal N \\cap \\mathcal I(\\bar \\epsilon) $ has universal numbers, $ b_2 \\asymp | \\partial_z \\delta | $ and $ b_1 = b_F /b_2 $ where $ b_F $ is the average Jacobian of $ F $. The Cantor attractor of $ F \\in \\mathcal N \\cap \\mathcal I(\\bar \\epsilon) $, $ \\mathcal O_F $ has {\\em unbounded geometry} almost everywhere in the parameter space of $ b_1 $. If two maps in $ \\mathcal N $ has different universal numbers $ b_1 $ and $ \\widetilde b_1 $, then the homeomorphism between two Cantor attractor is at most H\\\"older continuous, which is called {\\em non rigidity}.", "revisions": [ { "version": "v1", "updated": "2014-08-20T12:02:29.000Z" } ], "analyses": { "keywords": [ "cantor attractor", "invariant space", "hénon renormalization", "intrinsic geometry", "universal numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.4619N" } } }