{ "id": "1408.4583", "version": "v1", "published": "2014-08-20T09:46:22.000Z", "updated": "2014-08-20T09:46:22.000Z", "title": "Defect of compactness in spaces of bounded variation", "authors": [ "Adimurthi", "Cyril Tintarev" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "Defect of compactness for non-compact imbeddings of Banach spaces can be expressed in the form of a profile decomposition. This paper extends the profile decomposition for Sobolev spaces proved by Solimini (AIHP 1995) to the non-reflexive case p=1. Since existence of concentration profiles relies on weak-star compactness, the corresponding result is set in a larger, conjugate, space of functions of bounded variation. We prove existence of minimizers for related inequalities and generalizations for to spaces of bounded variation on Lie groups.", "revisions": [ { "version": "v1", "updated": "2014-08-20T09:46:22.000Z" } ], "analyses": { "subjects": [ "46B50", "46B99", "26B30", "46E35", "46N20", "35H20", "35J92" ], "keywords": [ "bounded variation", "profile decomposition", "concentration profiles relies", "paper extends", "non-compact imbeddings" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.4583A" } } }