{ "id": "1408.4299", "version": "v1", "published": "2014-08-19T11:28:28.000Z", "updated": "2014-08-19T11:28:28.000Z", "title": "Gamma Factors of Distinguished Representations of GL_n(C)", "authors": [ "Alexander Kemarsky" ], "comment": "25 pages", "categories": [ "math.RT" ], "abstract": "Let $(\\pi,V)$ be a $GL_n(\\mathbb{R})$-distinguished, irreducible, admissible representation of $GL_n(\\mathbb{C})$, let $\\pi'$ be an irreducible, admissible, $GL_m(\\mathbb{R})$-distinguished representation of $GL_m(\\mathbb{C})$, and let $\\psi$ be a non-trival character of $\\mathbb{C}$ which is trivial on $\\mathbb{R}$. We prove that Rankin-Selberg gamma factor at $s=\\frac{1}{2}$ is $\\gamma(\\frac{1}{2},\\pi \\times \\pi'; \\psi) = 1$. The result follows as a simple consequence from the characterisation of $GL_n(\\mathbb{R})$-distinguished representations in terms of their Langlands data.", "revisions": [ { "version": "v1", "updated": "2014-08-19T11:28:28.000Z" } ], "analyses": { "subjects": [ "22E45" ], "keywords": [ "distinguished representation", "rankin-selberg gamma factor", "non-trival character", "simple consequence", "langlands data" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.4299K" } } }