{ "id": "1408.3991", "version": "v1", "published": "2014-08-18T12:16:53.000Z", "updated": "2014-08-18T12:16:53.000Z", "title": "On multiplicatively independent bases in cyclotomic number fields", "authors": [ "Manfred G. Madritsch", "Volker Ziegler" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Recently the authors showed that the algebraic integers of the form $-m+\\zeta_k$ are bases of a canonical number system of $\\mathbb{Z}[\\zeta_k]$ provided $m\\geq \\phi(k)+1$, where $\\zeta_k$ denotes a $k$-th primitive root of unity and $\\phi$ is Euler's totient function. In this paper we are interested in the questions whether two bases $-m+\\zeta_k$ and $-n+\\zeta_k$ are multiplicatively independent. We show the multiplicative independence in case that $0<|m-n|<10^6$ and $|m|,|n|> 1$.", "revisions": [ { "version": "v1", "updated": "2014-08-18T12:16:53.000Z" } ], "analyses": { "subjects": [ "11R18", "11Y40", "11A63" ], "keywords": [ "cyclotomic number fields", "multiplicatively independent bases", "eulers totient function", "algebraic integers", "th primitive root" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.3991M" } } }