{ "id": "1408.2839", "version": "v2", "published": "2014-08-12T20:23:46.000Z", "updated": "2015-08-17T18:43:04.000Z", "title": "On the Splitting Number at Regular Cardinals", "authors": [ "Omer Ben-Neria", "Moti Gitik" ], "categories": [ "math.LO" ], "abstract": "Let $\\kappa$,$\\lambda$ be regular uncountable cardinals such that $\\lambda > \\kappa^+$ is not a successor of a singular cardinal of low cofinality. We construct a generic extension with $s(\\kappa) = \\lambda$ starting from a ground model in which $o(\\kappa) = \\lambda$ and prove that assuming $\\neg 0^{\\P}$, $s(\\kappa) = \\lambda$ implies that $o(\\kappa) \\geq \\lambda$ in the core model.", "revisions": [ { "version": "v1", "updated": "2014-08-12T20:23:46.000Z", "abstract": "Let $\\kappa$,$\\lambda$ be regular uncountable cardinals such that $\\kappa^+ < \\lambda$. We construct a generic extension with $s(\\kappa) = \\lambda$ starting from a ground model in which $o(\\kappa) = \\lambda$ and prove that assuming $\\neg 0^{\\P}$, $s(\\kappa) = \\lambda$ implies that $o(\\kappa) \\geq \\lambda$ in the core model.", "comment": "17 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-08-17T18:43:04.000Z" } ], "analyses": { "subjects": [ "03E10", "03E17", "03E35", "03E55" ], "keywords": [ "regular cardinals", "splitting number", "regular uncountable cardinals", "ground model" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.2839B" } } }