{ "id": "1408.2624", "version": "v2", "published": "2014-08-12T05:41:53.000Z", "updated": "2014-08-23T19:31:08.000Z", "title": "An integral formula in Kahler geometry with applications", "authors": [ "Xiaodong Wang" ], "comment": "revised", "categories": [ "math.DG", "math.CV" ], "abstract": "We establish an integral formula on a smooth, precompact domain in a Kahler manifold. We apply this formula to study holomorphic extension of CR functions. Using this formula we prove an isoperimetric inequality in terms of a positive lower bound for the Hermitian curvature of the boundary. Combining with a Minkowski type formula on the complex hyperbolic space we prove that any closed, embedded hypersurface of constant mean curvature must be a geodesic sphere, provided the hypersurface is Hopf. A similar result is established on the complex projective space.", "revisions": [ { "version": "v1", "updated": "2014-08-12T05:41:53.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-08-23T19:31:08.000Z" } ], "analyses": { "keywords": [ "integral formula", "kahler geometry", "applications", "constant mean curvature", "minkowski type formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.2624W" } } }