{ "id": "1408.2488", "version": "v2", "published": "2014-08-11T18:43:22.000Z", "updated": "2015-03-03T10:30:32.000Z", "title": "Fields of definition of Hodge loci", "authors": [ "Morihiko Saito", "Christian Schnell" ], "comment": "13 pages", "categories": [ "math.AG" ], "abstract": "We show that an irreducible component of the Hodge locus of a polarizable variation of Hodge structure of weight 0 on a smooth complex variety X is defined over an algebraically closed subfield k of finite transcendence degree if X is defined over k and the component contains a k-rational point. We also prove a similar assertion for the Hodge locus inside the Hodge bundle if the Hodge bundle together with the connection is defined over k. This is closely related with the theory of absolute Hodge classes. The proof uses the spread of the Hodge locus, and is quite similar to the case of the zero locus of an admissible normal function.", "revisions": [ { "version": "v1", "updated": "2014-08-11T18:43:22.000Z", "comment": "12 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-03-03T10:30:32.000Z" } ], "analyses": { "keywords": [ "definition", "hodge bundle", "smooth complex variety", "finite transcendence degree", "hodge locus inside" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.2488S" } } }