{ "id": "1408.2278", "version": "v1", "published": "2014-08-10T22:43:44.000Z", "updated": "2014-08-10T22:43:44.000Z", "title": "Kolmogorov complexity and strong approximation of Brownian motion", "authors": [ "Bjørn Kjos-Hanssen", "Tamás Szabados" ], "journal": "Proceedings of the American Mathematical Society 139 (2011) no. 9, 3307--3316", "doi": "10.1090/S0002-9939-2011-10741-X", "categories": [ "math.LO" ], "abstract": "Brownian motion and scaled and interpolated simple random walk can be jointly embedded in a probability space in such a way that almost surely the $n$-step walk is within a uniform distance $O(n^{-1/2}\\log n)$ of the Brownian path for all but finitely many positive integers $n$. Almost surely this $n$-step walk will be incompressible in the sense of Kolmogorov complexity, and all {Martin-L\\\"of random} paths of Brownian motion have such an incompressible close approximant. This strengthens a result of Asarin, who obtained the bound $O(n^{-1/6} \\log n)$. The result cannot be improved to $o(n^{-1/2}{\\sqrt{\\log n}})$.", "revisions": [ { "version": "v1", "updated": "2014-08-10T22:43:44.000Z" } ], "analyses": { "keywords": [ "brownian motion", "kolmogorov complexity", "strong approximation", "step walk", "interpolated simple random walk" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.2278K" } } }