{ "id": "1408.2254", "version": "v1", "published": "2014-08-10T17:01:22.000Z", "updated": "2014-08-10T17:01:22.000Z", "title": "Notes on automorphisms of surfaces of general type with $p_g=0$ and $K^2=7$", "authors": [ "Yifan Chen" ], "comment": "14 pages, 2 figures", "categories": [ "math.AG" ], "abstract": "Let $S$ be a smooth minimal complex surface of general type with $p_g=0$ and $K^2=7$. We prove that any involution on $S$ is in the center of the automorphism group of $S$. As an application, we show that the automorphism group of an Inoue surface with $K^2=7$ is isomorphic to $\\mathbb{Z}_2^2$ or $\\mathbb{Z}_2 \\times \\mathbb{Z}_4$. We construct a $2$-dimensional family of Inoue surfaces with automorphism groups isomorphic to $\\mathbb{Z}_2 \\times \\mathbb{Z}_4$.", "revisions": [ { "version": "v1", "updated": "2014-08-10T17:01:22.000Z" } ], "analyses": { "subjects": [ "14J29", "14J50" ], "keywords": [ "general type", "inoue surface", "smooth minimal complex surface", "automorphism groups isomorphic", "application" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.2254C" } } }