{ "id": "1408.2250", "version": "v1", "published": "2014-08-10T16:11:48.000Z", "updated": "2014-08-10T16:11:48.000Z", "title": "Sharp Cusa type inequalities for trigonometric functions with two parameters", "authors": [ "Zhen-Hang Yang" ], "comment": "29 pages", "categories": [ "math.CA" ], "abstract": "Let $\\left( p,q\\right) \\mapsto \\beta \\left( p,q\\right) $ be a function defined on $\\mathbb{R}^{2}$. We determine the best or better $p,q$ such that the inequality% \\begin{equation*} \\left( \\frac{\\sin x}{x}\\right) ^{p}<\\left( >\\right) 1-\\beta \\left( p,q\\right) +\\beta \\left( p,q\\right) \\cos ^{q}x \\end{equation*}% holds for $x\\in \\left( 0,\\pi /2\\right) $, and obtain a lot of new and sharp Cusa type inequalities for trigonometric functions. As applications, some new Shafer-Fink type and Carlson type inequalities for arc sine and arc cosine functions, and new inequalities for trigonometric means are established.", "revisions": [ { "version": "v1", "updated": "2014-08-10T16:11:48.000Z" } ], "analyses": { "subjects": [ "26D05", "33B10", "26A48", "26D15" ], "keywords": [ "sharp cusa type inequalities", "trigonometric functions", "parameters", "carlson type inequalities", "arc cosine functions" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.2250Y" } } }