{ "id": "1408.2020", "version": "v2", "published": "2014-08-09T04:27:20.000Z", "updated": "2015-01-06T08:04:16.000Z", "title": "On a nonlocal analog of the Kuramoto-Sivashinsky equation", "authors": [ "Rafael Granero-Belinchón", "John K. Hunter" ], "categories": [ "math.AP" ], "abstract": "We study a nonlocal equation, analogous to the Kuramoto-Sivashinsky equation, in which short waves are stabilized by a possibly fractional diffusion of order less than or equal to two, and long waves are destabilized by a backward fractional diffusion of lower order. We prove the global existence, uniqueness, and analyticity of solutions of the nonlocal equation and the existence of a compact attractor. Numerical results show that the equation has chaotic solutions whose spatial structure consists of interacting traveling waves resembling viscous shock profiles.", "revisions": [ { "version": "v1", "updated": "2014-08-09T04:27:20.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-01-06T08:04:16.000Z" } ], "analyses": { "keywords": [ "kuramoto-sivashinsky equation", "nonlocal analog", "traveling waves resembling viscous", "nonlocal equation", "fractional diffusion" ], "publication": { "doi": "10.1088/0951-7715/28/4/1103", "journal": "Nonlinearity", "year": 2015, "month": "Apr", "volume": 28, "number": 4, "pages": 1103 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015Nonli..28.1103G" } } }