{ "id": "1408.1983", "version": "v2", "published": "2014-08-08T21:13:31.000Z", "updated": "2014-09-23T21:38:15.000Z", "title": "Decomposition of bounded degree graphs into $C_4$-free subgraphs", "authors": [ "Ross J. Kang", "Guillem Perarnau" ], "comment": "8 pages; to appear in European Journal of Combinatorics", "categories": [ "math.CO" ], "abstract": "We prove that every graph with maximum degree $\\Delta$ admits a partition of its edges into $O(\\sqrt{\\Delta})$ parts (as $\\Delta\\to\\infty$) none of which contains $C_4$ as a subgraph. This bound is sharp up to a constant factor. Our proof uses an iterated random colouring procedure.", "revisions": [ { "version": "v1", "updated": "2014-08-08T21:13:31.000Z", "comment": "9 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-23T21:38:15.000Z" } ], "analyses": { "subjects": [ "05C15", "05D40", "05C35", "05C55" ], "keywords": [ "bounded degree graphs", "free subgraphs", "decomposition", "constant factor", "iterated random colouring procedure" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }