{ "id": "1408.1806", "version": "v2", "published": "2014-08-08T10:21:05.000Z", "updated": "2016-02-18T07:53:00.000Z", "title": "Liouville Type Theorem For A Nonlinear Neumann Problem", "authors": [ "Changlin Xiang" ], "comment": "This paper has been withdrawn by the author due to a poor writing", "categories": [ "math.AP" ], "abstract": "Consider the following nonlinear Neumann problem \\[ \\begin{cases} \\text{div}\\left(y^{a}\\nabla u(x,y)\\right)=0, & \\text{for }(x,y)\\in\\mathbb{R}_{+}^{n+1}\\\\ \\lim_{y\\rightarrow0+}y^{a}\\frac{\\partial u}{\\partial y}=-f(u), & \\text{on }\\partial\\mathbb{R}_{+}^{n+1},\\\\ u\\ge0 & \\text{in }\\mathbb{R}_{+}^{n+1}, \\end{cases} \\] $a\\in(-1,1)$. A Liouville type theorem and its applications are given under suitable conditions on $f$. Our tool is the famous moving plane method.", "revisions": [ { "version": "v1", "updated": "2014-08-08T10:21:05.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2016-02-18T07:53:00.000Z" } ], "analyses": { "subjects": [ "35J20", "35J25", "35J65" ], "keywords": [ "liouville type theorem", "nonlinear neumann problem", "famous moving plane method", "suitable conditions", "applications" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.1806X" } } }