{ "id": "1408.1620", "version": "v1", "published": "2014-08-07T15:22:49.000Z", "updated": "2014-08-07T15:22:49.000Z", "title": "Sharp $L^p$-Moser inequality on Riemannian manifolds", "authors": [ "Marcos Teixeira Alves", "Jurandir Ceccon" ], "categories": [ "math.AP" ], "abstract": "We consider $(M,g)$ a smooth compact Riemannian manifold of dimension $n \\geq 2$ without boundary, $1 < p$ a real parameter and $r = \\frac{p(n + p)}{n}$. This paper concerns the validity of the optimal Moser inequality \\[ \\left(\\int_M |u|^r\\; dv_g \\right)^{\\frac{\\tau}{p}} \\leq \\left( A(p,n)^{\\frac{\\tau}{p}} \\left(\\int_M |\\nabla_g u|^p\\; dv_g\\right)^{\\frac{\\tau}{p}} + B_{opt} \\left(\\int_M |u|^p\\; dv_g\\right)^{\\frac{\\tau}{p}} \\right) \\left( \\int_M |u|^p\\; dv_g \\right)^{\\frac{\\tau}{n}} \\; . \\] This kind of inequality was already studied in the last years in the particular cases $1 < p < n$. Here we solve the case $n \\leq p$ and we introduce one more parameter $1 \\leq \\tau \\leq \\min\\{p,2\\}$. Moreover, we prove the existence of an extremal function for the optimal inequality above.", "revisions": [ { "version": "v1", "updated": "2014-08-07T15:22:49.000Z" } ], "analyses": { "keywords": [ "smooth compact riemannian manifold", "optimal moser inequality", "optimal inequality", "extremal function", "real parameter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.1620T" } } }