{ "id": "1408.1609", "version": "v1", "published": "2014-08-07T14:42:36.000Z", "updated": "2014-08-07T14:42:36.000Z", "title": "Weak approximation of an invariant measure and a low boundary of the entropy", "authors": [ "B. Gurevich" ], "comment": "3 pages", "categories": [ "math.DS" ], "abstract": "For a measurable map $T$ and a sequence of $T$-invariant probability measures $\\mu_n$ that converges in some sense to a $T$-invariant probability measure $\\mu$, an estimate from below for the Kolmogorov--Sinai entropy of $T$ with respect to $\\mu$ is suggested in terms of the entropies of $T$ with respect to $\\mu_1$, $\\mu_2$, \\dots.", "revisions": [ { "version": "v1", "updated": "2014-08-07T14:42:36.000Z" } ], "analyses": { "subjects": [ "37A35", "37A50" ], "keywords": [ "invariant measure", "low boundary", "weak approximation", "invariant probability measure", "kolmogorov-sinai entropy" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.1609G" } } }