{ "id": "1408.0538", "version": "v1", "published": "2014-08-03T20:23:26.000Z", "updated": "2014-08-03T20:23:26.000Z", "title": "On the Sum of the Non-Negative Lyapunov Exponents for Some Cocycles Related to the Anderson Model", "authors": [ "Ilia Binder", "Michael Goldstein", "Mircea Voda" ], "categories": [ "math-ph", "math.DS", "math.MP", "math.SP" ], "abstract": "We provide an explicit lower bound for the the sum of the non-negative Lyapunov exponents for some cocycles related to the Anderson model. In particular, for the Anderson model on a strip of width $ W $ the lower bound is proportional to $ W^{-\\epsilon} $, for any $ \\epsilon>0 $. This bound is consistent with the fact that the lowest non-negative Lyapunov exponent is conjectured to have a lower bound proportional to $ W^{-1} $.", "revisions": [ { "version": "v1", "updated": "2014-08-03T20:23:26.000Z" } ], "analyses": { "subjects": [ "82B44", "47B36", "81Q10" ], "keywords": [ "anderson model", "explicit lower bound", "lower bound proportional", "lowest non-negative lyapunov exponent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.0538B" } } }