{ "id": "1408.0494", "version": "v1", "published": "2014-08-03T12:53:20.000Z", "updated": "2014-08-03T12:53:20.000Z", "title": "A note on the existence of traveling-wave solutions to a Boussinesq system", "authors": [ "Filipe Oliveira" ], "categories": [ "math.AP" ], "abstract": "We obtain a one-parameter family $$(u_{\\mu}(x,t),\\eta_{\\mu}(x,t))_{\\mu\\geq \\mu_0}=(\\phi_{\\mu}(x-\\omega_{\\mu} t),\\psi_{\\mu}(x-\\omega_{\\mu} t))_{\\mu\\geq \\mu_0}$$ of traveling-wave solutions to the Boussinesq system $$u_t+\\eta_x+uu_x+c\\eta_{xxx}=0,\\eta_t+u_x+(\\eta u)_x+au_{xxx}=0$$ in the case $a,c<0$, with non-null speeds $\\omega_{\\mu}$ arbitrarily close to $0$ ($\\omega_{\\mu}\\xrightarrow[\\mu\\to+\\infty]{} 0$). We show that the $L^2$-size of such traveling-waves satisfies the uniform (in $\\mu$) estimate $\\|\\phi_{\\mu}\\|_2^2+\\|\\psi_{\\mu}\\|_2^2\\leq C\\sqrt{|a|+|c|},$ where $C$ is a positive constant. Furthermore, $\\phi_{\\mu}$ and $-\\psi_{\\mu}$ are smooth, non-negative, radially decreasing functions which decay exponentially at infinity.", "revisions": [ { "version": "v1", "updated": "2014-08-03T12:53:20.000Z" } ], "analyses": { "keywords": [ "traveling-wave solutions", "boussinesq system", "non-null speeds", "traveling-waves satisfies", "one-parameter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }