{ "id": "1408.0223", "version": "v2", "published": "2014-08-01T16:23:58.000Z", "updated": "2015-01-26T20:35:18.000Z", "title": "Central Strips of Sibling Leaves in Laminations of the Unit Disk", "authors": [ "David J. Cosper", "Jeffrey K. Houghton", "John C. Mayer", "Luka Mernik", "Joseph W. Olson" ], "comment": "31 pages and 19 figures", "categories": [ "math.DS" ], "abstract": "Quadratic laminations of the unit disk were introduced by Thurston as a vehicle for understanding the (connected) Julia sets of quadratic polynomials and the parameter space of quadratic polynomials. The \"Central Strip Lemma\" plays a key role in Thurston's classification of gaps in quadratic laminations, and in describing the corresponding parameter space. We generalize the notion of {\\em Central Strip} to laminations of all degrees $d\\ge2$ and prove a Central Strip Lemma for degree $d\\ge2$. We conclude with applications of the Central Strip Lemma to {\\em identity return polygons} that show it may play a role similar to Thurston's lemma for higher degree laminations.", "revisions": [ { "version": "v1", "updated": "2014-08-01T16:23:58.000Z", "comment": "30 pages and 18 figures", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-01-26T20:35:18.000Z" } ], "analyses": { "subjects": [ "37F20", "54F15" ], "keywords": [ "unit disk", "central strip lemma", "sibling leaves", "quadratic laminations", "parameter space" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.0223C" } } }