{ "id": "1407.8443", "version": "v1", "published": "2014-07-31T14:51:18.000Z", "updated": "2014-07-31T14:51:18.000Z", "title": "The 2-adic valuations of differences of Stirling numbers of the second kind", "authors": [ "Wei Zhao", "Jianrong Zhao", "Shaofang Hong" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $m, n, k$ and $c$ be positive integers. Let $\\nu_2(k)$ be the 2-adic valuation of $k$. By $S(n,k)$ we denote the Stirling numbers of the second kind. In this paper, we first establish a convolution identity of the Stirling numbers of the second kind and provide a detailed 2-adic analysis to the Stirling numbers of the second kind. Consequently, we show that if $2\\le m\\le n$ and $c$ is odd, then $\\nu_2(S(c2^{n+1},2^m-1)-S(c2^n, 2^m-1))=n+1$ except when $n=m=2$ and $c=1$, in which case $\\nu_2(S(8,3)-S(4,3))=6$. This solves a conjecture of Lengyel proposed in 2009.", "revisions": [ { "version": "v1", "updated": "2014-07-31T14:51:18.000Z" } ], "analyses": { "keywords": [ "second kind", "stirling numbers", "differences", "convolution identity", "positive integers" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.8443Z" } } }