{ "id": "1407.8423", "version": "v1", "published": "2014-07-31T14:07:24.000Z", "updated": "2014-07-31T14:07:24.000Z", "title": "A path model for Whittaker vectors", "authors": [ "P. Di Francesco", "R. Kedem", "B. Turmunkh" ], "comment": "40 pages, 2 figures", "categories": [ "math.RT", "math-ph", "math.MP", "math.QA" ], "abstract": "In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra $U_q(\\mathfrak{sl}_{r+1})$. This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the $q$-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.", "revisions": [ { "version": "v1", "updated": "2014-07-31T14:07:24.000Z" } ], "analyses": { "keywords": [ "whittaker vectors", "finite-dimensional simple lie algebras", "affine whittaker functions", "construct weighted path models", "affine lie algebras" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1309214, "adsabs": "2014arXiv1407.8423D" } } }