{ "id": "1407.8318", "version": "v1", "published": "2014-07-31T08:51:14.000Z", "updated": "2014-07-31T08:51:14.000Z", "title": "Conjugacy classes of $n$-tuples in semi-simple Jordan algebras", "authors": [ "Hannah Bergner" ], "comment": "12 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "Let $J$ be a finite-dimensional semi-simple Jordan algebra over an algebraically closed field of characteristic $0$. In this article, the diagonal action of the automorphism group of $J$ on the $n$-fold product $J\\times\\ldots \\times J$ is studied. In particular, it is shown that the orbit through an $n$-tuple $x=(x_1,,\\ldots,x_n)$ is closed if and only if the Jordan subalgebra generated by the elements $x_1,\\ldots, x_n$ is semi-simple.", "revisions": [ { "version": "v1", "updated": "2014-07-31T08:51:14.000Z" } ], "analyses": { "keywords": [ "conjugacy classes", "finite-dimensional semi-simple jordan algebra", "diagonal action", "automorphism group", "fold product" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.8318B" } } }