{ "id": "1407.7919", "version": "v2", "published": "2014-07-30T01:37:22.000Z", "updated": "2014-11-04T06:15:44.000Z", "title": "Particle Motion in Monopoles and Geodesics on Cones", "authors": [ "Maxence Mayrand" ], "journal": "SIGMA 10 (2014), 102, 17 pages", "doi": "10.3842/SIGMA.2014.102", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "The equations of motion of a charged particle in the field of Yang's $\\mathrm{SU}(2)$ monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle $\\mathbb{R}^8\\setminus\\{0\\}\\to\\mathbb{R}^5\\setminus\\{0\\}$ obtained by radially extending the Hopf fibration $S^7\\to S^4$, and solved by elementary methods. The main result is that for every particle trajectory $\\mathbf{r}:I\\to\\mathbb{R}^5\\setminus\\{0\\}$, there is a 4-dimensional cone with vertex at the origin on which $\\mathbf{r}$ is a geodesic. We give an explicit expression of the cone for any initial conditions.", "revisions": [ { "version": "v1", "updated": "2014-07-30T01:37:22.000Z", "title": "Particle motion in monopoles and geodesics on cones", "comment": "18 pages, 2 figures", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-04T06:15:44.000Z" } ], "analyses": { "subjects": [ "70H06", "34A26", "53B50" ], "keywords": [ "particle motion", "main result", "euclidean space", "elementary methods", "kaluza-klein formalism" ], "tags": [ "journal article" ], "publication": { "journal": "SIGMA", "year": 2014, "month": "Nov", "volume": 10, "pages": 102 }, "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1308980, "adsabs": "2014SIGMA..10..102M" } } }