{ "id": "1407.7894", "version": "v1", "published": "2014-07-29T21:33:58.000Z", "updated": "2014-07-29T21:33:58.000Z", "title": "A primality criterion based on a Lucas' congruence", "authors": [ "Romeo Mestrovic" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be a prime. In 1878 \\'{E}. Lucas proved that the congruence $$ {p-1\\choose k}\\equiv (-1)^k\\pmod{p}$$ holds for any nonnegative integer $k\\in\\{0,1,\\ldots,p-1\\}$. The converse statement was given in Problem 1494 of {\\it Mathematics Magazine} proposed in 1997 by E. Deutsch and I.M. Gessel. In this note we generalize this converse assertion by the following result: If $n>1$ and $q>1$ are integers such that $$ {n-1\\choose k}\\equiv (-1)^k \\pmod{q}$$ for every integer $k\\in\\{0,1,\\ldots, n-1\\}$, then $q$ is a prime and $n$ is a power of $q$.", "revisions": [ { "version": "v1", "updated": "2014-07-29T21:33:58.000Z" } ], "analyses": { "subjects": [ "11A51", "11A07", "05A10", "11B65" ], "keywords": [ "primality criterion", "congruence", "converse statement", "mathematics magazine", "converse assertion" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.7894M" } } }