{ "id": "1407.7845", "version": "v3", "published": "2014-07-29T19:47:20.000Z", "updated": "2014-08-14T22:29:00.000Z", "title": "Rational curves on elliptic surfaces", "authors": [ "Douglas Ulmer" ], "comment": "15 pages. v2: Added a reference and corrected a quote. v3: Added another reference", "categories": [ "math.AG" ], "abstract": "We prove that a very general elliptic surface $\\mathcal{E}\\to\\mathbb{P}^1$ over the complex numbers with a section and with geometric genus $p_g\\ge2$ contains no rational curves other than the section and components of singular fibers. Equivalently, if $E/\\mathbb{C}(t)$ is a very general elliptic curve of height $d\\ge3$ and if $L$ is a finite extension of $\\mathbb{C}(t)$ with $L\\cong\\mathbb{C}(u)$, then the Mordell-Weil group $E(L)=0$.", "revisions": [ { "version": "v3", "updated": "2014-08-14T22:29:00.000Z" } ], "analyses": { "subjects": [ "14J27", "14G99", "11G99" ], "keywords": [ "rational curves", "general elliptic surface", "general elliptic curve", "geometric genus", "singular fibers" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.7845U" } } }