{ "id": "1407.7422", "version": "v2", "published": "2014-07-28T14:06:51.000Z", "updated": "2015-08-29T22:19:48.000Z", "title": "An inequality à la Szegő-Weinberger for the $p-$Laplacian on convex sets", "authors": [ "L. Brasco", "C. Nitsch", "C. Trombetti" ], "categories": [ "math.AP", "math.OC" ], "abstract": "In this paper we prove a sharp inequality of Szeg\\H{o}-Weinberger type for the first nontrivial eigenvalue of the $p-$Laplacian with Neumann boundary conditions. This applies to convex sets with given diameter. Some variants, extensions and limit cases are investigated as well.", "revisions": [ { "version": "v1", "updated": "2014-07-28T14:06:51.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-08-29T22:19:48.000Z" } ], "analyses": { "subjects": [ "35P30", "47A75", "34B15" ], "keywords": [ "convex sets", "szegő-weinberger", "neumann boundary conditions", "first nontrivial eigenvalue", "sharp inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.7422B" } } }