{ "id": "1407.7303", "version": "v1", "published": "2014-07-28T01:28:48.000Z", "updated": "2014-07-28T01:28:48.000Z", "title": "Remarks on a Liouville-type theorem for Beltrami flows", "authors": [ "Dongho Chae", "Peter Constantin" ], "comment": "6 pages", "categories": [ "math.AP" ], "abstract": "We present a simple, short and elementary proof that if $v$ is a Beltrami flow with a finite energy in $\\mathbb R^3$ then $v=0$. In the case of the Beltrami flows satisfying $v\\in L^\\infty _{loc} (\\Bbb R^3) \\cap L^q(\\Bbb R^3)$ with $q\\in [2, 3)$, or $|v(x)|=O(1/|x|^{1+\\varepsilon})$ for some $\\varepsilon >0$, we provide a different, simple proof that $v=0$.", "revisions": [ { "version": "v1", "updated": "2014-07-28T01:28:48.000Z" } ], "analyses": { "subjects": [ "35Q31", "76B03", "76W05" ], "keywords": [ "liouville-type theorem", "simple proof", "elementary proof", "finite energy" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.7303C" } } }