{ "id": "1407.7285", "version": "v1", "published": "2014-07-27T21:23:08.000Z", "updated": "2014-07-27T21:23:08.000Z", "title": "An explicit approach to the Ahlgren-Ono conjecture", "authors": [ "Geoffrey D. Smith", "Lynnelle Ye" ], "comment": "5 pages", "categories": [ "math.NT" ], "abstract": "Let $p(n)$ be the partition function. Ahlgren and Ono conjectured that every arithmetic progression contains infinitely many integers $N$ for which $p(N)$ is not congruent to $0\\pmod{3}$. Radu proved this conjecture in 2010 using work of Deligne and Rapoport. In this note, we give a simpler proof of Ahlgren and Ono's conjecture in the special case where the modulus of the arithmetic progression is a power of $3$ by applying a method of Boylan and Ono and using work of Bella\\\"iche and Khare generalizing Serre's results on the local nilpotency of the Hecke algebra.", "revisions": [ { "version": "v1", "updated": "2014-07-27T21:23:08.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83" ], "keywords": [ "ahlgren-ono conjecture", "explicit approach", "khare generalizing serres results", "arithmetic progression contains", "hecke algebra" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.7285S" } } }