{ "id": "1407.7217", "version": "v1", "published": "2014-07-27T13:03:16.000Z", "updated": "2014-07-27T13:03:16.000Z", "title": "On a general SU(3) Toda System", "authors": [ "Francesca Gladiali", "Massimo Grossi", "Jun-cheng Wei" ], "categories": [ "math.AP" ], "abstract": "We study the following generalized $SU(3)$ Toda System $$ \\left\\{\\begin{array}{ll} -\\Delta u=2e^u+\\mu e^v & \\hbox{ in }\\R^2\\\\ -\\Delta v=2e^v+\\mu e^u & \\hbox{ in }\\R^2\\\\ \\int_{\\R^2}e^u<+\\infty,\\ \\int_{\\R^2}e^v<+\\infty \\end{array}\\right. $$ where $\\mu>-2$. We prove the existence of radial solutions bifurcating from the radial solution $(\\log \\frac{64}{(2+\\mu) (8+|x|^2)^2}, \\log \\frac{64}{ (2+\\mu) (8+|x|^2)^2})$ at the values $\\mu=\\mu_n=2\\frac{2-n-n^2}{2+n+n^2},\\ n\\in\\N $.", "revisions": [ { "version": "v1", "updated": "2014-07-27T13:03:16.000Z" } ], "analyses": { "keywords": [ "toda system", "general su", "radial solutions bifurcating" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.7217G" } } }