{ "id": "1407.7092", "version": "v1", "published": "2014-07-26T03:49:54.000Z", "updated": "2014-07-26T03:49:54.000Z", "title": "Ramsey numbers of paths and graphs of the same order", "authors": [ "Chaoping Pei", "Yusheng Li" ], "comment": "8 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "For graphs $F_n$ and $G_n$ of order $n$, if $R(F_n, G_n)=(\\chi(G_n)-1)(n-1)+\\sigma(G_n)$, then $F_n$ is said to be $G_n$-good, where $\\sigma(G_n)$ is the minimum size of a color class among all proper vertex-colorings of $G_n$ with $\\chi(G_n)$ colors. Given $\\Delta(G_n)\\le \\Delta$, it is shown that $P_n$ is asymptotically $G_n$-good if $\\alpha(G_n)\\le\\frac{n}{4}$.", "revisions": [ { "version": "v1", "updated": "2014-07-26T03:49:54.000Z" } ], "analyses": { "keywords": [ "ramsey numbers", "color class", "proper vertex-colorings" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.7092P" } } }