{ "id": "1407.6375", "version": "v1", "published": "2014-07-23T20:08:04.000Z", "updated": "2014-07-23T20:08:04.000Z", "title": "Finite dimensional quotients of Hecke algebras", "authors": [ "Ivan Losev" ], "comment": "8 pages", "categories": [ "math.RT" ], "abstract": "Let W be a complex reflection group. We prove that there is the maximal finite dimensional quotient of the Hecke algebra H_q(W) of W and that the dimension of this quotient coincides with |W|. This is a weak version of a Brou\\'e-Malle-Rouquier conjecture from 1998. The proof is based on categories O for Rational Cherednik algebras.", "revisions": [ { "version": "v1", "updated": "2014-07-23T20:08:04.000Z" } ], "analyses": { "subjects": [ "20C08", "20F55", "16G99" ], "keywords": [ "hecke algebra", "maximal finite dimensional quotient", "rational cherednik algebras", "complex reflection group", "quotient coincides" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.6375L" } } }