{ "id": "1407.6329", "version": "v1", "published": "2014-07-23T18:41:52.000Z", "updated": "2014-07-23T18:41:52.000Z", "title": "Perfect codes in Doob graphs", "authors": [ "Denis Krotov" ], "comment": "11pp", "categories": [ "math.CO", "cs.IT", "math.IT" ], "abstract": "We study $1$-perfect codes in Doob graphs $D(m,n)$. We show that such codes that are linear over $GR(4^2)$ exist if and only if $n=(4^{g+d}-1)/3$ and $m=(4^{g+2d}-4^{g+d})/6$ for some integers $g \\ge 0$ and $d>0$. We also prove necessary conditions on $(m,n)$ for $1$-perfect codes that are linear over $Z_4$ (we call such codes additive) to exist in $D(m,n)$ graphs; for some of these parameters, we show the existence of codes. For every $m$ and $n$ satisfying $2m+n=(4^t-1)/3$ and $m \\le (4^t-5\\cdot 2^{t-1}+1)/9$, we prove the existence of $1$-perfect codes in $D(m,n)$, without the restriction to admit some group structure. Keywords: perfect codes, Doob graphs, distance regular graphs.", "revisions": [ { "version": "v1", "updated": "2014-07-23T18:41:52.000Z" } ], "analyses": { "subjects": [ "94B05", "94B25", "05B40" ], "keywords": [ "perfect codes", "doob graphs", "distance regular graphs", "group structure", "necessary conditions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.6329K" } } }