{ "id": "1407.6149", "version": "v2", "published": "2014-07-23T09:24:24.000Z", "updated": "2014-09-08T16:03:22.000Z", "title": "Line Polar Grassmann Codes of Orthogonal Type", "authors": [ "Ilaria Cardinali", "Luca Giuzzi", "Antonio Pasini" ], "categories": [ "math.CO" ], "abstract": "Polar Grassmann codes of orthogonal type have been introduced in I. Cardinali and L. Giuzzi, \\emph{Codes and caps from orthogonal Grassmannians}, {Finite Fields Appl.} {\\bf 24} (2013), 148-169. They are subcodes of the Grassmann code arising from the projective system defined by the Pl\\\"ucker embedding of a polar Grassmannian of orthogonal type. In the present paper we fully determine the minimum distance of line polar Grassmann Codes of orthogonal type for $q$ odd.", "revisions": [ { "version": "v1", "updated": "2014-07-23T09:24:24.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-08T16:03:22.000Z" } ], "analyses": { "subjects": [ "51A50", "51E22", "51A45" ], "keywords": [ "line polar grassmann codes", "orthogonal type", "finite fields appl", "minimum distance", "polar grassmannian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.6149C" } } }