{ "id": "1407.5789", "version": "v1", "published": "2014-07-22T09:04:24.000Z", "updated": "2014-07-22T09:04:24.000Z", "title": "A Curious Congruence Involving Alternating Harmonic Sums", "authors": [ "Liuquan Wang" ], "comment": "This is an original research article about congruences. It has submitted for publication in June 2014", "categories": [ "math.NT" ], "abstract": "Let $p$ be a prime and ${\\mathcal{P}_{p}}$ the set of positive integers which are prime to $p$. We establish the following interesting congruence \\[\\sum\\limits_{\\begin{smallmatrix} i+j+k={{p}^{r}} i,j,k\\in {\\mathcal{P}_{p}} \\end{smallmatrix}}{\\frac{{{(-1)}^{i}}}{ijk}}\\equiv \\frac{{{p}^{r-1}}}{2}{{B}_{p-3}}\\, (\\bmod \\, {{p}^{r}}).\\]", "revisions": [ { "version": "v1", "updated": "2014-07-22T09:04:24.000Z" } ], "analyses": { "subjects": [ "11A07", "11A41" ], "keywords": [ "alternating harmonic sums", "curious congruence", "positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.5789W" } } }