{ "id": "1407.5518", "version": "v1", "published": "2014-07-21T15:03:15.000Z", "updated": "2014-07-21T15:03:15.000Z", "title": "Hardy inequalities for p-Laplacians with Robin boundary conditions", "authors": [ "Tomas Ekholm", "Hynek Kovarik", "Ari Laptev" ], "categories": [ "math.AP", "math.SP" ], "abstract": "In this paper we study the best constant in a Hardy inequality for the p-Laplace operator on convex domains with Robin boundary conditions. We show, in particular, that the best constant equals $((p-1)/p)^p$ whenever Dirichlet boundary conditions are imposed on a subset of the boundary of non-zero measure. We also discuss some generalizations to non-convex domains.", "revisions": [ { "version": "v1", "updated": "2014-07-21T15:03:15.000Z" } ], "analyses": { "keywords": [ "robin boundary conditions", "hardy inequality", "p-laplacians", "dirichlet boundary conditions", "best constant equals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.5518E" } } }