{ "id": "1407.5259", "version": "v1", "published": "2014-07-20T09:24:50.000Z", "updated": "2014-07-20T09:24:50.000Z", "title": "Contractibility of ultrapower of Frechet algebras", "authors": [ "E. Feizi", "J. Soleymani" ], "categories": [ "math.FA" ], "abstract": "The aim of this article is to study a number of relationship between Frechet algebra $\\mathcal{A}$ and its ultrapower $(\\mathcal{A})_{\\mathcal{U}}$. We give a characterization in some aspects such as locally bounded approximate identity. We consider the notion of contractibility of ultrapower of Frechet algebra, and we show that if $(\\mathcal{A})_{\\mathcal{U}}$ has approximation property with good ultrafilter $\\mathcal{U}$ then $\\mathcal{A}$ is contractible if and only if $(\\mathcal{A})_{\\mathcal{U}}$ is contractible.", "revisions": [ { "version": "v1", "updated": "2014-07-20T09:24:50.000Z" } ], "analyses": { "keywords": [ "frechet algebra", "ultrapower", "contractibility", "locally bounded approximate identity", "approximation property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.5259F" } } }