{ "id": "1407.5134", "version": "v2", "published": "2014-07-18T23:35:40.000Z", "updated": "2015-02-06T14:23:20.000Z", "title": "Armstrong's Conjecture for $(k, mk + 1)$-Core Partitions", "authors": [ "Amol Aggarwal" ], "comment": "17 pages, 3 figures", "journal": "European Journal of Combinatorics 47, 54-67 (2015)", "doi": "10.1016/j.ejc.2015.01.008", "categories": [ "math.CO", "math.NT" ], "abstract": "A conjecture of Armstrong states that if $\\gcd (a, b) = 1$, then the average size of an $(a, b)$-core partition is $(a - 1)(b - 1)(a + b + 1) / 24$. Recently, Stanley and Zanello used a recursive argument to verify this conjecture when $a = b - 1$. In this paper we use a variant of their method to establish Armstrong's conjecture in the more general setting where $a$ divides $b - 1$.", "revisions": [ { "version": "v1", "updated": "2014-07-18T23:35:40.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-02-06T14:23:20.000Z" } ], "analyses": { "keywords": [ "core partition", "armstrong states", "establish armstrongs conjecture", "recursive argument" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.5134A" } } }