{ "id": "1407.5133", "version": "v2", "published": "2014-07-18T23:25:22.000Z", "updated": "2014-08-26T12:37:47.000Z", "title": "Spectral radius, numerical radius, and the product of operators", "authors": [ "Rahim Alizadeh", "Mohammad B. Asadi", "Che-Man Cheng", "Wanli Hong", "Chi-Kwong Li" ], "comment": "9 pages", "journal": "J. Math. Anal. Appl., 2014", "categories": [ "math.FA" ], "abstract": "Let $\\sigma(A)$, $\\rho(A)$ and $r(A)$ denote the spectrum, spectral radius and numerical radius of a bounded linear operator $A$ on a Hilbert space $H$, respectively. We show that a linear operator $A$ satisfying $$\\rho(AB)\\le r(A)r(B) \\quad\\text{ for all bounded linear operators } B$$ if and only if there is a unique $\\mu \\in \\sigma (A)$ satisfying $|\\mu| = \\rho(A)$ and $A = \\frac{\\mu(I + L)}{2}$ for a contraction $L$ with $1\\in\\sigma(L)$. One can get the same conclusion on $A$ if $\\rho(AB) \\le r(A)r(B)$ for all rank one operators $B$. If $H$ is of finite dimension, we can further decompose $L$ as a direct sum of $C \\oplus 0$ under a suitable choice of orthonormal basis so that $Re(C^{-1}x,x) \\ge 1$ for all unit vector $x$.", "revisions": [ { "version": "v1", "updated": "2014-07-18T23:25:22.000Z", "title": "Spectral radius and numerical radius of operators product", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-08-26T12:37:47.000Z" } ], "analyses": { "subjects": [ "47A12" ], "keywords": [ "spectral radius", "numerical radius", "operators product", "bounded linear operator", "hilbert space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.5133A" } } }