{ "id": "1407.4869", "version": "v1", "published": "2014-07-18T02:00:10.000Z", "updated": "2014-07-18T02:00:10.000Z", "title": "The Sparing Number of the Cartesian Products of Certain Graphs", "authors": [ "K. P. Chithra", "K. A. Germina", "N. K. Sudev" ], "comment": "8 pages, published. arXiv admin note: substantial text overlap with arXiv:1311.0858", "journal": "Communications in Mathematics and Applications, Vol.5 Issue 1, 2014, 23-30", "categories": [ "math.CO" ], "abstract": "Let $\\mathbb{N}_0$ be the set of all non-negative integers. An integer additive set-indexer (IASI) is defined as an injective function $f:V(G)\\rightarrow \\mathcal{P}(\\mathbb{N}_0)$ such that the induced function $f^+:E(G) \\rightarrow \\mathcal{P}(\\mathbb{N}_0)$ defined by $f^+ (uv) = f(u)+ f(v)$ is also injective, where $f(u)+f(v)$ is the sumset of $f(u)$ and $f(v)$ and $\\mathcal{P}(\\mathbb{N}_0)$ is the power set of $\\mathbb{N}_0$. If $f^+(uv)=k \\forall ~ uv\\in E(G)$, then $f$ is said to be a $k$-uniform integer additive set-indexer. An integer additive set-indexer $f$ is said to be a weak integer additive set-indexer if $|f^+(uv)|=max(|f(u)|,|f(v)|) \\forall ~ uv\\in E(G)$. In this paper, we study about the sparing number of the cartesian product of two graphs.", "revisions": [ { "version": "v1", "updated": "2014-07-18T02:00:10.000Z" } ], "analyses": { "subjects": [ "05C78" ], "keywords": [ "cartesian product", "sparing number", "weak integer additive set-indexer", "uniform integer additive set-indexer", "power set" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.4869C" } } }