{ "id": "1407.4827", "version": "v1", "published": "2014-07-14T20:07:33.000Z", "updated": "2014-07-14T20:07:33.000Z", "title": "Construction of self-dual codes over $\\mathbb{Z}_{2^m}$", "authors": [ "Anuradha Sharma", "Amit K. Sharma" ], "categories": [ "math.NT" ], "abstract": "Self-dual codes (Type I and Type II codes) play an important role in the construction of even unimodular lattices, and hence in the determination of Jacobi forms. In this paper, we construct both Type I and Type II codes (of higher lengths) over the ring $\\mathbb{Z}_{2^m}$ of integers modulo $2^m$ from shadows of Type I codes of length $n$ over $\\mathbb{Z}_{2^m}$ for each positive integer $n;$ and obtain their complete weight enumerators. Using these results, we also determine some Jacobi forms on the modular group $\\Gamma(1) = SL(2; \\mathbb{Z}).$ Besides this, for each positive integer $n$; we also construct self-dual codes (of higher lengths) over $\\mathbb{Z}_{2^m}$ from the generalized shadow of a self-dual code $\\mathcal{C}$ of length $n$ over $\\mathbb{Z}_{2^m}$ with respect to a vector $s\\in \\mathbb{Z}_{2^m}^n\\setminus \\mathcal{C}$ satisfying either $s\\cdot s \\equiv 0 (mod 2^m)$ or $s\\cdot s \\equiv 2^{m-1} (mod 2^m).$", "revisions": [ { "version": "v1", "updated": "2014-07-14T20:07:33.000Z" } ], "analyses": { "keywords": [ "construction", "higher lengths", "jacobi forms", "positive integer", "construct self-dual codes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.4827S" } } }