{ "id": "1407.4736", "version": "v2", "published": "2014-07-17T16:57:16.000Z", "updated": "2014-12-01T18:17:53.000Z", "title": "(Uniform) Convergence of Twisted Ergodic Averages", "authors": [ "Tanja Eisner", "Ben Krause" ], "comment": "31 pages, the referee's suggestions incorporated, references added, typos corrected. A uniform estimate of the ergodic averages with Hardy field weights by the corresponding Gowers-Host-Kra uniformity seminorms is added, see Theorem 2.11. To appear in Ergodic Theory Dynam. Systems", "categories": [ "math.DS", "math.CA", "math.NT" ], "abstract": "Let $T$ be an ergodic measure-preserving transformation on a non-atomic probability space $(X,\\Sigma,\\mu)$. We prove uniform extensions of the Wiener-Wintner theorem in two settings: For averages involving weights coming from Hardy field functions, $p$: \\[ \\{\\frac{1}{N} \\sum_{n\\leq N} e(p(n)) T^{n}f(x) \\} \\] and for \"twisted\" polynomial ergodic averages: \\[ \\{\\frac{1}{N} \\sum_{n\\leq N} e(n \\theta) T^{P(n)}f(x) \\} \\] for certain classes of badly approximable $\\theta \\in [0,1]$. We also give an elementary proof that the above twisted polynomial averages converge pointwise $\\mu$-a.e. for $f \\in L^p(X), \\ p >1,$ and arbitrary $\\theta \\in [0,1]$.", "revisions": [ { "version": "v1", "updated": "2014-07-17T16:57:16.000Z", "abstract": "Let $T$ be an ergodic measure-preserving transformation on a non-atomic probability space $(X,\\Sigma,\\mu)$. We prove uniform extensions of the Wiener-Wintner theorem in two settings: For averages involving weights coming from Hardy field functions, $p$: \\[ \\left\\{ \\frac{1}{N} \\sum_{n\\leq N} e( p(n) ) T^{n}f(x) \\right\\} \\] and for \"twisted\" polynomial ergodic averages: \\[ \\left\\{ \\frac{1}{N} \\sum_{n\\leq N} e(n \\theta) T^{P(n)}f(x) \\right\\} \\] for certain classes of badly approximable $\\theta \\in [0,1]$. We also give an elementary proof that the above twisted polynomial averages converge pointwise $\\mu$-a.e.\\ for $f \\in L^p(X), \\ p >1,$ and arbitrary $\\theta \\in [0,1]$.", "comment": "28 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-12-01T18:17:53.000Z" } ], "analyses": { "keywords": [ "twisted ergodic averages", "convergence", "non-atomic probability space", "hardy field functions", "polynomial ergodic averages" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.4736E" } } }