{ "id": "1407.4460", "version": "v2", "published": "2014-07-16T20:00:15.000Z", "updated": "2015-02-24T20:14:13.000Z", "title": "Thermal Transport in a Noncommutative Hydrodynamics", "authors": [ "Michael Geracie", "Dam Thanh Son" ], "comment": "5 pages, published version", "journal": "ZhETF 147 (2015) 508", "categories": [ "cond-mat.stat-mech", "hep-th" ], "abstract": "We find the hydrodynamic equations of a system of particles constrained to be in the lowest Landau level. We interpret the hydrodynamic theory as a Hamiltonian system with the Poisson brackets between the hydrodynamic variables determined from the noncommutativity of space. We argue that the most general hydrodynamic theory can be obtained from this Hamiltonian system by allowing the Righi-Leduc coefficient to be an arbitrary function of thermodynamic variables. We compute the Righi-Leduc coefficients at high temperatures and show that it satisfies the requirements of particle-hole symmetry, which we outline.", "revisions": [ { "version": "v1", "updated": "2014-07-16T20:00:15.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-02-24T20:14:13.000Z" } ], "analyses": { "keywords": [ "thermal transport", "noncommutative hydrodynamics", "hamiltonian system", "righi-leduc coefficient", "lowest landau level" ], "tags": [ "journal article" ], "publication": { "doi": "10.1134/S1063776115030061", "journal": "Soviet Journal of Experimental and Theoretical Physics", "year": 2015, "month": "Mar", "volume": 120, "number": 3, "pages": 444 }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1306774, "adsabs": "2015JETP..120..444G" } } }