{ "id": "1407.4418", "version": "v2", "published": "2014-07-16T18:31:25.000Z", "updated": "2014-09-08T15:46:33.000Z", "title": "On Gaussian multiplicative chaos", "authors": [ "Alexander Shamov" ], "comment": "43 pages", "categories": [ "math.PR" ], "abstract": "We propose a new definition of the Gaussian multiplicative chaos (GMC) and an approach based on the relation of subcritical GMC to randomized shifts of a Gaussian measure. Using this relation we prove general uniqueness and convergence results for subcritical GMC that hold for Gaussian fields with arbitrary covariance kernels.", "revisions": [ { "version": "v1", "updated": "2014-07-16T18:31:25.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-08T15:46:33.000Z" } ], "analyses": { "subjects": [ "60G15", "60G57", "60B10" ], "keywords": [ "gaussian multiplicative chaos", "subcritical gmc", "arbitrary covariance kernels", "general uniqueness", "convergence results" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.4418S" } } }