{ "id": "1407.4221", "version": "v1", "published": "2014-07-16T07:54:46.000Z", "updated": "2014-07-16T07:54:46.000Z", "title": "Global solution to nonlinear Dirac equation for Gross-Neveu model in $1+1$ dimensions", "authors": [ "Yongqian Zhang", "Qin Zhao" ], "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "This paper studies a class of nonlinear Dirac equations with cubic terms in $R^{1+1}$, which include the equations for the massive Thirring model and the massive Gross-Neveu model. Under the assumption that the initial data has bounded $L^2$ norm, the global existence and the uniqueness of the strong solution in $C([0,\\infty),L^2(R^1))$ are proved.", "revisions": [ { "version": "v1", "updated": "2014-07-16T07:54:46.000Z" } ], "analyses": { "subjects": [ "35Q41", "35L60", "35Q40" ], "keywords": [ "nonlinear dirac equation", "global solution", "dimensions", "global existence", "paper studies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1306661, "adsabs": "2014arXiv1407.4221Z" } } }