{ "id": "1407.4069", "version": "v1", "published": "2014-07-15T17:45:17.000Z", "updated": "2014-07-15T17:45:17.000Z", "title": "Non-Haar MRA on local fields of positive characteristic", "authors": [ "Sergey Lukomskii", "Alexander Vodolazov" ], "comment": "31 pages. arXiv admin note: text overlap with arXiv:1303.5635", "categories": [ "math.NT" ], "abstract": "We propose a simple method to construct integral periodic mask and corresponding scaling step functions that generate non-Haar orthogonal MRA on the local field $ F^{(s)}$ of positive characteristic $p$. To construct this mask we use two new ideas. First, we consider local field as vector space over the finite field $GF(p^s)$. Second, we construct scaling function by arbitrary tree that has $p^s$ vertices. By fixed prime number $p$ there exist $p^{s(p^s-2)}$ such trees.", "revisions": [ { "version": "v1", "updated": "2014-07-15T17:45:17.000Z" } ], "analyses": { "subjects": [ "42C40", "43A70" ], "keywords": [ "local field", "positive characteristic", "non-haar mra", "generate non-haar orthogonal mra", "construct integral periodic mask" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.4069L" } } }