{ "id": "1407.3658", "version": "v3", "published": "2014-07-14T14:06:57.000Z", "updated": "2016-01-26T08:48:25.000Z", "title": "Fano manifolds whose elementary contractions are smooth $\\mathbb P^1$-fibrations: A geometric characterization of flag varieties", "authors": [ "Gianluca Occhetta", "Luis E. Solá Conde", "Kiwamu Watanabe", "Jarosław A. Wiśniewski" ], "comment": "30 pages, minor issues corrected. To appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze", "categories": [ "math.AG" ], "abstract": "The present paper provides a geometric characterization of complete flag varieties for semisimple algebraic groups. Namely, if $X$ is a Fano manifold whose all elementary contractions are $\\mathbb P^1$-fibrations then $X$ is isomorphic to the complete flag manifold $G/B$ where $G$ is a semi-simple Lie algebraic group and $B$ is a Borel subgroup of $G$.", "revisions": [ { "version": "v2", "updated": "2014-07-24T07:24:44.000Z", "title": "Fano manifolds whose elementary contractions are smooth $\\mathbb P^1$-fibrations", "comment": "30 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2016-01-26T08:48:25.000Z" } ], "analyses": { "subjects": [ "14J45", "14E30", "14M17" ], "keywords": [ "fano manifold", "elementary contractions", "fibrations", "semi-simple lie algebraic group", "complete flag varieties" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.3658O" } } }